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1 Introduction

A simple harmonic oscillator is a system in which a restoring force is
directly proportional to the displacement from equilibrium. The dynamics
of such a system are governed by the second-order differential equation:

d2x

dt2
+ ω2x = 0

where x(t) is the displacement at time t and ω is the angular frequency of
oscillation, given by:

ω0 =

√
g

L

where L is the length of the pendulum and g is the gravitational constant,
approximated at 9.81ms−2. The equations rely on the assumption of small
angle approximations where sin θ = θ. For this experiment, we set the max-
imum approximation to be 15◦.

1.1 Coupled Oscillators

When two oscillators are connected to allow motion energy to be ex-
changed between them, they form a system known as a coupled oscillator.
In this experiment, the motion of one oscillator affects the other by oscil-
lating the string both pendulums are connected. Refer to Figure 2a in the
Methodology section to visualize the apparatus.

If the two oscillators are equal in length, they are said to be in resonance.
When they are in resonance, the oscillation frequencies for the two pendulums
are the same, and energy can be transferred between them efficiently. The
exchange is called an energy exchange. Figure 1 demonstrates the motion of
the coupled oscillators, where the blue line is the leading oscillator, and the
red line is the lagging oscillator. We see the motion starts with maximum
oscillations in the blue trajectory. Slowly, the energy transfers to the red tra-
jectory, and while the blue trajectory diminishes, the red trajectory increases
in amplitude. The cycle, or energy exchange, repeats continuously. In our
study, the time of energy exchange will be defined as the time difference
from the peak of the blue oscillation, to the first minimum of oscillation. We
will derive the mathematical background of motion after introducing normal
modes.
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Figure 1: Angular displacements of a coupled oscillator.

1.2 Normal Modes

The interaction of the coupled oscillators gives rise to normal modes. Nor-
mal modes are independent oscillation patterns in which a system oscillates
at the same frequency. In our study, the system exhibits two distinct normal
modes: swinging together and swinging opposite. Each mode corresponds to
a unique frequency. When the two pendulums oscillate in opposite directions,
the pivot point of both pendulums is on the string. In the other normal mode,
when they are oscillating in the same direction, the entire system oscillates,
and the pivot point will be higher, at the point of connection between the
string and the beam. The result is two different normal frequencies:

ω1 =

√
g

L
, ω2 =

√
g

L+ a
(1)

where a is the vertical length difference from the first pivot point to the
second.

Importantly, the equation of motion for the system is a linear combination
of the normal modes [Morse, 1936], expressed as:

x(t) = A cos(ω1t+ ϕ1) +B cos(ω2t+ ϕ2)
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where A, B, ϕ1, and ϕ2 are initial conditions. To analyze the exchange
of energy between the oscillators, we simplify the model by assuming that
A = B (due to symmetry) and ϕ1 = ϕ2.

Using the sum to product sinusoidal identities, we further simplify the
equation to:

x(t) = 2A cos

(
ω1 + ω2

2
t

)
cos

(
ω1 − ω2

2
t

)
The term cos

(
ω1−ω2

2
t
)
has a significantly longer period since the term

inside the sinusoidal is the subtraction of terms. Hence, it models the am-
plitude of the entire function. The period of the oscillations can then be
expressed as:

Tperiod =
2π

ω1−ω2

2

=
4π

ω1 − ω2

Given that the frequencies are derived from the lengths of the pendu-
lums, the time of energy exchange is a function of both pendulum lengths.
Substituting the frequencies with lengths from Equation 1, the relationship
between the energy exchange period and the pendulum lengths is given by:

Tperiod =
4π√

g
L
−
√

g
L+a

However, the observed period is also influenced by a coupling coefficient
[Olsen, 1945]. The coupling coefficient accounts for non-ideal factors, such as
variations in coupling strength due to separation distance, frictional effects,
or minor differences in pendulum characteristics. Additionally, the time of
energy exchange is only a fraction of the period. The many factors combined
make it difficult to estimate the coupling coefficient. However, since the
coupling coefficient only modifies the equation linearly, we can still obtain a
concrete equation of proportionality:

Texchange ∝
1√

g
L
−

√
g

L+a

(2)

In this investigation, we aim to explore how the relative lengths of two
resonant harmonic oscillators affect the time of energy exchange between
them, and how these variations influence the system’s behaviour over time.
However, while Equation 2 models the relationship, it does not allow for
linear analysis.
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1.3 Taylor Series Expansion for Linearization

Instead, to further simplify this relationship, we can perform a Taylor
series expansion on the expression to obtain a polynomial form, assuming
a < L. A final equation in polynomial form allows for linear analysis through
taking L to the obtained degree.

A Taylor series expansion is an infinite sum of terms that are expressed
in terms of the function’s derivatives. Terms of higher-order derivatives at-
tribute minimally to the accuracy of the approximations, so obtaining the
first two terms is sufficient for our case. Using a first-order Taylor expansion
for the square root terms, we have:√

g

L+ a
≈

√
g

L
− a

2
· g

L3/2

Substituting this into the denominator, we get:√
g

L
−

√
g

L+ a
≈ a · g

2L3/2

Thus, the expression for Texchange becomes:

Texchange ∝
π
a·g

2L3/2

Or more simply:
Texchange ∝ L3/2 (3)

2 Variables and Measurement

Independent Variable: Length of the Pendulum

Measurement: Length measured from the point of suspension to the
mass using a measuring tape. The error of the instrument is ± 0.005 m.

Range: The lengths will vary from 0.200 m to 1.500 m, with increments
of 0.100 m. The minimum range is present due to the differences in the two
normal modes of the system. When the length of the pendulums is too small,
the normal modes have a frequency difference that is too high to align with
the model. The 1.500 m maximum is sufficient to observe the relationship.
Increments of 0.100 m allow for a balance between obtaining precise data
points and redundancy.
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Dependent Variable: Time of Energy Exchange

Measurement: The time for the leading pendulum to transfer energy
to the lagging pendulum and return to the starting position. Referring to
figure 1, the energy exchange is complete when the angular velocity is at its
lowest in the trough of its motion. From our small angle approximation, the
angular velocity is similar to the horizontal velocity. In tracking software,
find the time between the release of the pendulum and the time of the lowest
horizontal velocity to obtain the time of energy exchange.

Error & Range: The error associated with the measurement has two
parts. The negligible component is the absolute error from the instrument.
The frame rates of 60 FPS recording results in an error of at most ± 0.02s.
The more significant error results from the difficulty in judging the time of
release and minimum angular velocity, since the value will be made with a
human observation. To account for the human error, a total of 15 trials will
be conducted at each interval of length, allowing for calculations of standard
deviations to quantify the error.

Controlled Variables

Amplitude: Simple harmonic motion is only applicable for drop angles
under ≈ 15◦. We set the drop angle to the maximum of the assumption since
higher drop angles have angular displacements that are more pronounced
and more easily analysed. The angle must be the same since low drop angles
typically lead to weaker coupling.

Mass of the Bob: Unlike typical pendulums, the coupled pendulum
system is affected by the mass of the bob. Heavier masses have stronger
and unpredictable effects on the coupling between the pendulum masses, in
the form of unpredictable vibrations of the strings. In addition, a mass that
is too light may be affected by air resistance. From preliminary testing, a
pendulum bob mass of 20.00 g minimizes both effects.

Separation of Pendulums: The separation between pendulums deter-
mines the coupling strength. The closer the separation, the stronger the
coupling and the faster the energy exchange. Preliminary testing shows a
0.200 ± 0.005 m separation between the pendulums resulting in a stable
system. We will use this value for the experiment.
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3 Methodology

(a) Apparatus

(b) Height above ground propaga-
tion. The formula is h = ground
height−L cos(15◦)

Figure 2: Methodology schematics.

1. Set up apparatus as in Figure 2a. Place a camera perpendicular to the
motion of the pendulums.

2. Tie pendulums using strings of equal length onto the string across the
beams. Start with a string length of 0.20 m. Tie a 20.00 g spherical
steel mass at the end of each string.

3. Displace the pendulum by 15 degrees. Use the height propagation
outlined in Figure 2b to obtain the height of mass for a 15◦ drop.

4. Release the pendulum. The energy will begin to exchange, and the
pendulum released will oscillate slower while the other will oscillate
faster. Track the leading pendulum’s velocity with tracking software.

5. When the horizontal velocity of the leading pendulum is at its lowest,
the energy is fully exchanged. The time between the release and the
lowest horizontal velocity is the time exchanged.

6. Repeat trials with the same lengths for an additional 14 times to obtain
15 trials for the specific length.

7



7. Continue to increase the pendulum length by 0.100 m and repeat the
data collection until the pendulum lengths ranging from 0.200 m to
0.150 m have been completed.

4 Data Analysis

4.1 Single trial

Figure 3: Horizontal displacement of the leading pendulum over time.

Figure 3 shows the horizontal displacement over time of a trial with a
length of 0.500 m. To find the time of energy exchange, subtract the time
of the lowest horizontal velocity from the moment of release. Finding the
lowest horizontal velocity is the most difficult part of the process. We first
locate the oscillation with the smallest peak, labelled in Figure 3. We will
set the maximum of the peak as the lowest horizontal velocity because the
derivative at that point is zero. Additionally, the error will be 0.1s since that
is the width of the peak. For this trial, we judge the peak as 10.307s, with
the release time at 1.435s. The energy exchange is then 10.307 − 1.435 =
8.872 ≈ 8.9± 0.1s. If we repeat the analysis for all trials, we obtain Table 1.
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Table 1: Quantitative data on the relationship between oscillator length and
time of energy exchange.

Length
(m) ±0.005

Time (s) ±0.1s

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Trial 11 Trial 12 Trial 13 Trial 14 Trial 15
0.200 2.9 2.5 2.5 2.9 2.5 2.7 2.7 3.0 2.9 2.8 2.7 2.6 2.7 3.1 2.8
0.250 3.9 3.8 3.4 3.7 3.7 3.7 3.4 3.8 3.7 3.3 3.7 3.9 3.8 3.8 4.0
0.300 4.6 4.5 4.3 4.2 4.4 4.7 4.3 4.4 4.6 4.5 4.5 4.4 4.2 4.5 4.3
0.350 5.4 5.7 5.1 5.4 5.5 5.3 5.3 5.6 5.6 5.5 5.3 5.4 5.4 5.2 5.5
0.400 6.4 6.0 6.6 6.5 6.6 6.6 6.7 6.5 6.5 6.9 6.6 6.8 6.9 6.9 6.4
0.450 7.5 7.8 7.6 7.6 7.5 7.7 7.8 7.6 7.7 7.9 7.8 8.1 7.6 7.4 7.5
0.500 8.8 8.5 8.8 8.8 8.9 9.0 8.9 8.8 8.9 8.6 8.5 8.7 9.0 8.7 8.8
0.550 9.7 10.0 9.6 10.5 10.0 9.5 10.5 9.8 10.1 10.1 9.8 9.2 9.5 10.2 10.0
0.600 10.9 10.9 11.2 11.3 11.2 11.0 11.2 11.0 10.6 10.9 10.7 11.3 11.0 11.2 11.0
0.650 12.0 12.0 12.4 12.5 12.1 11.8 12.0 12.3 12.5 11.7 12.6 12.1 12.0 12.4 12.9
0.700 13.1 14.0 13.4 12.9 13.4 13.4 13.0 12.8 13.4 13.5 13.4 13.7 13.2 13.3 13.2
0.750 14.8 14.5 14.9 15.1 14.8 14.4 14.8 14.4 14.6 15.1 14.6 14.3 14.6 14.4 14.6
0.800 16.3 16.5 16.4 16.1 16.2 16.3 16.2 16.2 16.4 16.2 16.2 16.3 16.3 16.3 16.4
0.850 17.6 17.6 18.1 18.1 17.9 17.9 17.6 17.6 18.0 17.8 17.7 18.1 17.6 17.5 17.8
0.900 19.4 18.8 18.9 19.0 18.5 18.8 19.4 19.2 19.0 19.0 19.2 18.9 19.2 19.1 18.6
0.950 20.4 20.5 20.4 20.4 20.5 20.7 20.4 20.6 20.4 20.5 20.5 20.5 20.6 20.4 20.5
1.000 22.8 22.8 21.6 21.0 21.6 23.2 21.8 21.8 22.0 22.2 22.4 23.0 22.2 22.9 22.9
1.050 23.4 23.5 24.0 23.3 24.2 24.4 23.6 23.2 24.1 23.8 23.5 24.0 23.5 23.9 23.2
1.100 25.7 25.5 25.3 25.2 25.2 25.5 25.4 25.4 25.2 25.2 25.7 25.8 25.6 25.5 25.6
1.150 26.8 26.8 26.8 26.7 26.8 26.9 27.2 26.7 26.6 26.8 26.9 26.9 27.1 26.9 27.0
1.200 28.7 28.9 28.1 28.5 28.1 29.0 28.5 29.0 29.0 28.6 28.4 28.8 29.0 28.5 28.5
1.250 30.8 30.3 30.2 30.8 30.6 30.6 30.6 30.9 30.5 30.4 30.7 30.6 30.3 30.7 30.6
1.300 31.8 31.9 31.9 31.9 31.4 31.5 32.3 31.6 31.6 32.4 31.9 31.9 32.0 31.9 31.5
1.350 33.5 33.7 33.4 34.4 33.1 34.0 33.8 34.6 33.8 33.3 34.0 33.6 33.8 33.3 33.1
1.400 35.9 35.8 35.8 35.4 35.6 35.2 35.3 35.5 35.5 35.4 35.8 36.1 35.9 35.6 35.4
1.450 37.3 36.8 37.4 37.0 37.4 37.3 37.1 37.8 37.5 37.8 37.3 37.7 37.2 37.7 37.5
1.500 39.7 39.0 38.8 39.2 38.9 39.2 39.2 39.5 39.1 38.8 39.0 39.3 39.1 39.5 39.2

Table 2: Qualitative Observations

Observations
Upon the start of each trial, when we pull on the leading pendu-
lum, the system vibrates slightly, causing the lagging pendulum to
oscillate slowly.
When the string length of the pendulum exceeded ≈ 1.00 m, it
would get tangled in itself, spinning vigorously during the trial.
These trials are disregarded but should be something to be aware
of.

4.2 Numerical analysis

To analyze the raw data in Table 1, we calculate the mean and stan-
dard deviation for each set of trials at each pendulum length. The standard
deviation, SD, is calculated using:

SD =

√√√√ 1

N − 1

N∑
i=1

(xi − x̄)2

where x̄ is the mean, xi represents each individual measurement, and N is
the total number of trials.
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Sample Calculation for Length 0.200 m

For the length L = 0.200m we obtain the mean of 2.7s. The standard
deviation is then

SD =

√√√√ 1

15− 1

15∑
i=1

(xi − 2.7)2

SD = 0.2 s

Two standard deviations will capture 95.4% of the data. Thus, for L =
0.200m, the mean time of energy exchange is 2.7 s with an error of 2× 0.2 =
0.4 s. By repeating these calculations for each length, we obtain Table 3.

4.3 Higher degree analysis

Table 3: Quantitative data of the length of oscillators and time of energy
exchange with corresponding standard deviations.

Length
±0.005 (m)

Time (s)
±2SD

2 SD (s)
Length

±0.005 (m)
Time (s)
±2SD

2 SD (s)

0.200 2.7 0.3 0.900 19.0 0.5
0.250 3.7 0.3 0.950 20.5 0.2
0.300 4.4 0.3 1.000 22.3 1.2
0.350 5.4 0.4 1.050 23.7 0.8
0.400 6.6 0.2 1.100 25.4 0.4
0.450 7.7 0.2 1.150 26.9 0.4
0.500 8.8 0.3 1.200 28.7 0.6
0.550 10.0 0.7 1.250 30.6 0.4
0.600 11.0 0.4 1.300 31.9 0.6
0.650 12.2 0.6 1.350 33.8 0.8
0.700 13.4 0.6 1.400 35.6 0.9
0.750 14.6 0.6 1.450 37.4 0.9
0.800 16.3 0.3 1.500 39.2 0.8
0.850 17.8 0.5

We plot the first unmodified graph on Desmos to visualize the trend and
utilize the computational software to obtain values of proportionality. Note,
we are saving the error analysis for the linearized graphs, and the polynomial
graph here is simply for the purpose of obtaining the variable a to confirm
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the accuracy of the experiment. Additionally, the relative error is negligible.
For the above reasons, no error bars are present on Figure 4.

Figure 4: Relationship between length of pendulums and time of energy
exchange.

From the Desmos plot, we input the derived equation:

T =
b√

g
l
−
√

g
l+a

The computer finds the most suitable values as b = 5.029 and a = 0.162.
Substituting, with units, we get

T =
5.029√

9.81ms−2

l
−
√

9.81ms−2

l+0.162m

(4)

The significant variable is a. From the background, we understand that
a is what offsets the two normal modes. The offset is the difference in length
between the longer and shorter oscillation points. From the diagrams of the
apparatus in the Methodology section, we see the value of a in reality is 0.166
± 0.005 m. Compared with the computer’s 0.162m, the difference between
the theoretical and the reality is minimal. It is within the absolute error
of the instrument of ± 0.005 m. The accuracy reflects the accuracy of the
model.
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4.4 Linear analysis

Next, we can linearize the data points to facilitate linear analysis. Recall
from the background that the proportionality equation is given by T ∝ L3/2,
from the Taylor series expansion. By transforming our data points for L
by raising each to the power of 3

2
, we obtain the values presented in Table

1. With this transformation, the data now follows a linear trend, making it
suitable for linear analysis.

To determine the error in our transformed data, let ϵL be the percentage
error in L. Since L is raised to the power of 3

2
, the propagated error becomes:

ϵL3/2 =
3

2
· ϵL

We obtain Table 4 for the calculations and Figure 5 for the graph. The
standard deviation of the time remains the same as Table 3 since no changes
have been made.

Figure 5: Linearized relationship between length of pendulums and time of
energy exchange.

Note: Error bars are mostly too small to be visible.
In cases of high correlation and negligible error, a minimum-maximum

gradient analysis of the trend line would not provide meaningful analysis due
to its negligible difference. Instead, we calculate the r2 value to quantify the
fit. The r2 value can be obtained using the formula:
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Table 4: Linearized data between the length of pendulums and time of energy
exchange.

Length
3
2

(m
3
2 ) ±ϵL

Time (s)

±2SD

Length
3
2

(m
3
2 ) ±ϵL

Time (s)

±2SD

0.089 ± 0.038 2.7 ± 0.3 0.854 ± 0.008 19.0 ± 0.5

0.125 ± 0.030 3.7 ± 0.3 0.926 ± 0.008 20.5 ± 0.2

0.164 ± 0.025 4.4 ± 0.3 1.000 ± 0.008 22.3 ± 1.2

0.207 ± 0.021 5.4 ± 0.4 1.076 ± 0.007 23.7 ± 0.8

0.253 ± 0.019 6.6 ± 0.2 1.154 ± 0.007 25.4 ± 0.4

0.302 ± 0.017 7.7 ± 0.2 1.233 ± 0.007 26.9 ± 0.4

0.354 ± 0.015 8.8 ± 0.3 1.315 ± 0.006 28.7 ± 0.6

0.408 ± 0.014 10.0 ± 0.7 1.398 ± 0.006 30.6 ± 0.4

0.465 ± 0.013 11.0 ± 0.4 1.482 ±0.006 31.9 ± 0.6

0.524 ± 0.012 12.2 ± 0.6 1.569 ± 0.006 33.8 ± 0.8

0.586 ± 0.011 13.4 ± 0.6 1.657± 0.005 35.6 ± 0.9

0.650 ± 0.010 14.6 ± 0.6 1.746 ± 0.005 37.4 ± 0.9

0.716 ± 0.009 16.3 ± 0.3 1.837 ± 0.005 39.2 ± 0.8

0.784 ± 0.009 17.8 ± 0.5

r2 = 1−
∑

(yi − ŷi)
2∑

(yi − ȳ)2

where yi are the observed values, ŷi are the predicted values from the linear
model and ȳ is the mean of the observed values. The r2 value, which ranges
from 0 to 1, represents the degree of correlation between the data and the
trend line. The calculated r2 value of this experiment is 0.98. The high value
signifies a strong correlation.

Despite the strong correlation, there is one major difference between our
data and the model. Since the model’s prediction is a relationship that is
directly proportional, the y-intercept of the linearized data should cross the
origin. Instead, the y-intercept is 1.3s, which is well outside the theoretical
prediction, even considering errors. We address the asymmetry in evaluation,
classifying the shift as a systematic error.
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5 Conclusion

The data collected in this study strongly supports the hypothesis that
the time of energy exchange between two coupled pendulums is influenced
by their relative lengths. The plot of time of energy exchange T against pen-
dulum length L exhibits a clear trend consistent with the derived relationship
T ∝ L3/2. The strong r2 value of 0.98 reflects an excellent fit, indicating that
the model accurately captures the relationship between pendulum length and
exchange time. Furthermore, the negligible standard deviation throughout
the data reinforces the high precision of the measurements. The constant a,
the predicted value of the difference in length, aligns closely with the real
value, indicating that the length-dependent frequency differences between
normal modes are well captured by the model.

Overall, the consistency between theoretical and empirical values suggests
that the experimental apparatus and setup were effectively controlled and
that the model is robust in predicting behaviour across the tested range of
lengths.

In comparison with existing literature, coupled oscillator systems are a
well-researched topic. However, the specific relationship between pendu-
lum length and energy exchange time in resonant harmonic oscillators is
not directly outlined in existing literature. Instead, the theory is largely
self-derived. The findings, however, align with the general principle that
an increase in pendulum length results in longer periods of oscillation and,
consequently, an extended energy exchange time. Thus, this experiment con-
tributes a unique perspective to the understanding of coupled pendulum dy-
namics, grounded in consistent empirical evidence and agreement on broader
mechanical principles observed in coupled oscillatory systems.

To conclude, the data provides strong support for the derived relation-
ship and, given the low uncertainty and high accuracy of the measurements,
confidently validates the model proposed in this experiment. Future research
could extend this approach by examining the consistency of the trend with
longer oscillator lengths or by exploring other coupling factors or config-
urations, thereby further enriching our understanding of energy exchange
dynamics in resonant systems.
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6 Evaluation

Nonetheless, several factors may have introduced sources of error that
influenced the accuracy of the measurements.

Firstly, there is a noticeable loss of energy over time, which is evident
in the decrease in amplitude from one maximum to the next. We can see
the diminishing heights between the periods in Figure 3. The first maximum
lies on a horizontal displacement of ≈ 0.400m, while the second one lies
on ≈ 0.335m. The amplitude diminishes due to air resistance and minor
internal friction within the pendulum’s pivot, which slowly drains energy
from the system and increases the measured energy exchange time.

Additionally, controlling the pre-trial vibrations of the lagging pendulum
was difficult. As outlined in the qualitative data, there are small vibrations
of the system when we initially pull back the leading pendulum. Any initial
disturbance increases the time for the system to achieve the phase shift for
the energy exchange pattern. Consequently, there is a systematic upward
shift in the energy transfer times.

As a consequence of the energy loss and uncontrolled vibrations, the en-
ergy exchange time shifted systematically upwards. According the Equation
3, the y-intercept of the linearized graph should be at zero. However, the
deviations increased the intercept to 1.3s. The discrepancy of 1.3s is well out-
side the range of the error, confirming the presence of the systematic error.
Of course, taking the cubic function to linearize the variables exaggerates the
displacement, but it is still significant regardless.

In future experimentation, we can change a few things to increase accu-
racy of the results. Firstly, smoother materials for the strings may decrease
the energy loss due to friction. Secondly, a contraption or assistant to hold
on to the lagging pendulum and its pivot point as the leading pendulum is
held back will reduce initial vibrations. Together, the changes could reduce
systematic increases in exchange time, which is the most significant weakness
of this experiment.

15



7 Bibliography
[Morse, 1936] Morse, P. M. (1936). Vibration and Sound. First edition.

[Olsen, 1945] Olsen, L. O. (1945). Coupled pendulums: An advanced labo-
ratory experiment. American Journal of Physics, 13(5):321–324.

16


